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Python implementation of the Balcioglu and Wood algo-

rithm

A Python implementation of the Balcioglu andWood algorithm1 is provided in the "Nearmin-

cut" github repository (https://github.com/mwitman1/nearmincut.git). This routine

has been incorporated into the private version of the LammpsInterface2 (https://github.

com/peteboyd/lammps_interface.git) program which handles all other logistics of struc-

ture processing using both Pymatgen3 and its own internal functionality. This new version

may be publicly released in the near future, but for immediate inquiries regarding the use of

this new functionality please contact the developers of LammpsInterface.

Formal definitions of min cuts are provided in the main manuscript, but a brief overview is

provided here to understand the functionality of nearmincut. Nearmincut accepts a Networkx

graph and a source and target node to compute the min s-t edge cut. Denoted w(C0), this is

the sum of the weights of all edges in the cut, where a cut is a set of edges that, if removed,

interrupts all paths form s to t. If C0 is the min cut, then w(C0) ≤ w(C ∈ C), where C is

all possible s-t cuts. Then the algorithm of Balcioglu and Wood recursively searches for all

cuts in the set Cε whose weights have w(C) ≤ (1 + ε)w(C0), where ε > 0 is a user specified

parameter that determines how "near" a cut is to the min cut. A trivial modification was

introduced that also allows the user to output all cuts with weight w(C) ≤ k+w(C0), where

again k > 0 is a user specified parameter. A simple test script in the repository shows how

to use the basic functionality of nearmincut.

The recursive algorithm of Balcioglu and Wood is briefly summarized here and further

details can be found in Ref. 1. Consider the directed graph in Figure S1. Note that this

graph is slightly different than the example presented in the manuscript since, instead of

anti-parallel, directed edges between nodes, only a single directed edge exists. This example

represents the identification of all cuts with w(C) ≤ k + w(C0) where k = 2. Each graph

in Figure S2a represents the min cut found at each step of the recursive enumeration of the
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cutset, and Figure S2b visualizes the corresponding recursion tree. At each iteration edges

have forced exclusion (by setting the weight to infinity) or forced inclusion (by adding an

edge with infinite weight from both the source and target to both nodes in the edge). For

example, after the first min cut is identified (Iter. 1) with w(C0) = 6, e10 is excluded from

the next possible solution by setting its weight to infinity. This produces a min cut with

value of 8 in Iter. 2, which satisfies w(C) ≤ k + 6. Hence we now go one level deeper into

the recursion tree. Excluding e4 does not produce a min cut with w(C) ≤ k + 6 in Iter.

3. In Iter. 4 we must include e4 and exclude e3. In Iter. 4 one can see that the inclusion

of e4 is forced by setting w(e1) = w(e8) = inf. This again leads to a min cut with a value

greater than 8, leading to termination at this node in the recursion tree. The examples are

continued for Iter. 5 and Iter. 6. Upon completion of the recursion tree, one would find in

addition that w(e10e1) = 8, yielding four possible solutions for all (near) min cuts.
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Figure S1: A sample directed graph for which we seek to find all C ∈ C with w(C) <=
k + w(C0) where k = 2.
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Iter. 1: w(e10e4e3)=6 Iter. 2: w(e9e7e4e3)=8 Iter. 3: w(e9e7e1)=10
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(a) (Near) min cuts of graphs with the enumeration of forced edge inclusion or exclusion

(b) Recursively forced inclusion and exclusion of edges to identify all (near) min cuts

Iter. 5: w(e4e3e2)=8 Iter. 6: w(e12e4e3)=10

Figure S2: (a) Visualization of the solution to the min cut problem at the first six iterations
in the recursion tree. Red edges represent the min cut in each particular iteration. (b) The
partially completed recursion tree where a node represents a cut and the connection to its
child shows which edges have forced exculsion (italicized) and forced inclusion (bold) in the
next iteration. The base case returns occurs when w(C) > k +w(C0) (red nodes) for k = 2.
Dashed lines indicate further exploration of the recursion tree is needed since the parent
node satisfies w(C) ≤ k + w(C0)
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Statistics of min cuts for IZA zeolites

Fig. S3 visualizes the ranking scheme demonstrated in Table S1 for all IZA zeolites in a

single figure. To construct this figure, each IZA contributes one entry in each column of the

histogram. For example, MWW contributes one purple unit in the (001) column since the

(001) min cut density achieves the lowest cut density (rank R1) of all other Miller planes,

which is also shown in Table S1. If two Miller surfaces are symmetrically equivalent, both are

assigned the same rank for visualization purposes according to a dense ranking scheme (each

surface’s ranking number is 1 plus the number of items ranked above it that are distinct

with respect to the ranking order). Anything above a rank of R16 is included in the R16 bin

color scheme. The min cut density for each face of each zeolite, as well as the corresponding

structure file, can be found in the supplementary data. According to Fig. S3, the majority

of structures have R1 ranks occurring for (001), (010), and (100) Miller faces, while a non-

negligible number have R1 ranks occurring for (011), (101), and (110) faces. The general

trend shows that, as might be expected, higher index Miller faces typically result in a higher

min cut density. Yet clearly there are many outlying structures which have high index Miller

faces with low ranks (R1, R2, or R3 for example). These subtleties highlight the necessity

of an automated and robust approach for zeolite surface generation and screening: various

IZA structures may require obtaining the min cut density of a relatively high index Miller

plane to find the R1 surface. This task would be extremely arduous if not impossible by

manual/visual inspection.

The power of the graph theory algorithm can also be appreciated by observing when it

identifies min cuts that lead to faceted surfaces. When the min cut is formed by a highly

faceted surface, which is especially true for high index Miller planes in the case of all silica

zeolites, it becomes visually clear that only an advanced graph theory based algorithm can

identify the solution to the min cut. Take for example several min cuts for various Miller

planes in MFI, shown in Fig. S4. For high index Miller faces, the surface terminations become

highly faceted to minimize the number of edges that are cut, but they are so complex that
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Table S1: Ranking of the EMT and MWW Miller surfaces based on their min cut density,
δ. Surfaces ranked higher than 10 are omitted for clarity.

EMT MWW

Rank Face δ Face δ

R1 (001) 0.0234 (001) 0.0112
R2 (100) 0.0248 (102) 0.0314
R3 (110) 0.0248 (102) 0.0314
R4 (010) 0.0248 (112) 0.0314
R5 (101) 0.0256 (112) 0.0314
R6 (101) 0.0256 (012) 0.0314
R7 (111) 0.0256 (012) 0.0314
R8 (111) 0.0256 (100) 0.0331
R9 (011) 0.0256 (110) 0.0331
R10 (011) 0.0256 (010) 0.0331
...
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Figure S3: The tabulated ranks of all 2-maximum index Miller surfaces of each IZA zeolite.
Here the minimum cut density corresponds to a rank of R1, and the maximum density
corresponds to R16 (all surfaces with a higher density than R16 are included in the R16
color-coding).

only an advanced algorithmic approach would be able to determine them.
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(a)
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Figure S4: (a-f) show the min cut surface termination for the (100), (101), (201), (301),
(120), and (511) Miller planes of MFI, respectively.
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Visualization of zeolites with high potential for a layered

2D form

The candidates with the largest δR2− δR1 values are visualized in Fig. S5. The ranking of all

IZA materials based on this descriptor is provided in supplementary data files as described

in the following sections. Fig. S5 displays the R1 plane horizontally and orthogonal to the

viewing page. These R1 surfaces are the predicted surfaces that would be expressed if the

zeolite can be synthesized in a layered 2D form.

CGF, R1 = (010)

JSW, R1 = (001) GON, R1 = (010)

UOS, R1 = (100)

Figure S5: Visualization of the proposed layered precursor for the four IZA structures with
the largest δR2− δR1 values that have not yet shown experimental verification of a 2D form.
The structures are shown with the R1 Miller surface horizontal and orthogonal with respect
to the viewing.

Supporting data files

The following sections explain the supplementary data files in supplementary_data.zip that

include the structures/min-cut statistics/properties/data that was used to generate the fig-

ures in the manuscript.
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Library of 2D zeolite nanosheets

A single min cut surface slab is provided for each symmetrically unique Miller face of each

IZA zeolite in the all_slabs directory.

A single R1 surface slab is provided for each symmetrically unique Miller face of each IZA

zeolite studied in IZA_all_slabs.zip. Note that, even if there are multiple unique terminations

for a Miller face that have the same minimum cut density, only one slab is provided for

that Miller face. Only data for symmetrically unique Miller faces is generated (where the

symmetrical faces are determined by Pymatgen), so the symmetrically equivalent Miller faces

are given in IZA_symm_equiv_M.txt. All hkl pairs appearing in the same line are equivalent.

Detailed data for IZA min cuts with normal weighting

For the normal edge weighting scheme where all edges between Si nodes have we = 1, the de-

tailed data is given in IZA_min_cut_detailed.txt. For each IZA structure and symmetrically

unique Miller face, M, the Miller indices and δM are listed. Column 1 = w(C0), Column 2

= area of the ab slab face, Column 3 = δM , Column 4 = a string denoting the IZA and M.

Summary data for IZAs min cuts with normal weighting

For the normal edge weighting scheme, the data is summarized in IZA_min_cut_summary.txt.

Column 1 = IZA code, Column 2 = δR2 − δR1, Column 3 = δR1, Column 4 = Df (largest

free sphere in crystallographic direction normal to R1).

Detailed data for IZAs with D4R special weighting

For the D4R edge weighting scheme, where any edge e with exactly one Si node in a D4R

sub-unit has we = 0, the data is summarized in IZA_min_cut_summary_D4R.txt. Only

IZAs that contain the D4R subunit are listed. Column 1 = number of edges in the min cut,

Column 2 = area of the ab slab face, Column 3 = δM , Column 4 = a string denoting the
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IZA and M.

Summary data for IZAs with D4R special weighting

For the D4R edge weighting scheme, the data is summarized in IZA_min_cut_summary_D4R.txt.

Column 1 = IZA code, Column 2 = δR2 − δR1, Column 3 = δR1, Column 4 = Df (largest

free sphere in crystallographic direction normal to R1).
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